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Abstract We investigate the properties of the Gibbs states and thermodynamic observables
of the spherical model in a random field. We show that on the low-temperature critical line
the magnetization of the model is not a self-averaging observable, but it self-averages con-
ditionally. We also show that an arbitrarily weak homogeneous boundary field dominates
over fluctuations of the random field once the model transits into a ferromagnetic phase. As
a result, a homogeneous boundary field restores the conventional self-averaging of thermo-
dynamic observables, like the magnetization and the susceptibility. We also investigate the
effective field created at the sites of the lattice by the random field, and show that at the
critical temperature of the spherical model the effective field undergoes a transition into a
phase with long-range correlations ∼r4−d .

Keywords Critical fluctuations · Disordered spin systems · Gibbs states · Self-averaging

1 Introduction

The spherical model [5] is a lattice model where a (thermodynamic) random variable xj is
attached to every site j of a subset Vn of a d-dimensional square lattice Zd . This model is
one of a handful of models where exact results can be obtained in the presence of a random
field {hj , j ∈ Zd}. Thermodynamic properties of such a disordered spherical model outside
the low-temperature critical line were studied by Pastur in the paper [14]. The magnetization
on the critical line was also derived there in the limits h0 → ±0, where h0 is the expected
value of the random field.

Some thermodynamic characteristics have discontinuities on the critical line, and, de-
pending on the boundary conditions and the exact details of passing to the thermodynamic
limit (Vn ↑ Zd ), those characteristics can have different limiting values. Their values in the
limits h0 → ±0 are, in some sense, extreme points of the sets of all possible limiting values.
For some models those sets contain simply all linear combinations of the extreme values.
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For disordered models, like the spherical model in a random field, that is not necessarily
the case. The aim of this paper is to study thermodynamic properties of the spherical model
directly on the low-temperature critical line.

Many models in statistical mechanics are complicated enough to force us to restrict the
investigation to finding only certain thermodynamic averages. For instance, sometimes in-
vestigation of magnetization is reduced to calculation of the averages

〈mN 〉 = 1

N

∑

j∈V

〈xj 〉,

where 〈·〉 denotes the average over the Gibbs distribution. However, as a rule, for a satis-
factory understanding of properties of a particular model (especially on a critical line) one
has to know distributions of various macroscopic (and, ideally, microscopic) quantities. For
that reason in the present paper we study the limiting Gibbs states and the distributions of
thermodynamic observables.

One of the properties particular to disordered systems in statistical mechanics is the self-
averaging of thermodynamic observables, introduced by Pastur and Figotin in the paper
[12]. There they also proved a general theorem concerning the self-averaging of thermody-
namic observables for a wide class of models. By observables they meant quantities already
averaged over the Gibbs distribution. For disordered systems involving a (realization of a)
random field {hj , j ∈ Zd} the self-averaging is defined as follows.

Definition 1 (see [12]) A thermodynamic observable 〈QN 〉 is self-averaging, if

lim
N→∞

〈QN 〉 = Q (1)

exists and is the same for almost all realizations of the random field, where exists and is the
same for almost all realizations of the random field, where N is the size of the system.

The name self-averaging indicates that one does not have to average the thermodynamic
observable QN over the distribution of the random field. Indeed the limiting distribution is
concentrated at the average value, since (1) trivially implies

lim
N→∞

〈QN 〉 = EQ,

where E(·) denotes the average over the distribution of the random field. As a rule self-
averaging observables are uniformly integrable, see [6, 16], hence, it is also true that

lim
N→∞

E〈QN 〉 = Q.

From probabilistic point of view there are no fundamental differences between the ther-
modynamic randomness (described by the Gibbs distribution) and the randomness of the
field {hj , j ∈ Zd}. Therefore it seems natural to get rid of the thermodynamic averages in
the definition of self-averaging for observables like the magnetization.

Definition 2 A thermodynamic observable QN is self-averaging, if

lim
N→∞

QN = Q, (2)

exists and is the same for almost all realizations of the random field {hj , j ∈ Zd}, where the
limit is understood in probability w.r.t. the thermodynamic randomness.
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There are thermodynamic observables which are not self-averaging on critical lines/
points, having continuous (non-thermodynamic) distributions. For instance, it is widely
known that the susceptibility

χN = 1

N

N∑

j,k=1

〈xjxk〉 − 〈xj 〉〈xk〉

is an observable of that kind. On the other hand, there are observables which distributions
concentrate at a few (two or more) points. This fact motivated the authors of the paper [3] to
introduce the notion of the conditional self-averaging.

Definition 3 (see [3]) A thermodynamic observable QN is conditionally self-averaging, if

lim
N→∞

QN − E(QN |ξN) = 0, in probability, (3)

where E(·|ξN) are the conditional averages w.r.t. a sequence of functions of the random field
{hj , j ∈ Zd} which obtain only a finite number of values, F , the same for all N .

For an illustration of the notion of conditional self-averaging one can look at the random-
field Curie–Weiss model, see [3]. In this model a conditionally self-averaging observable
QN is the magnetization 1

N

∑N

j=1 sj , the sequence of functions ξN is the sign of the total
random field

ξN = sgn

(
N∑

j=1

hj

)
,

and E(QN |ξN) ∼ ξNm∗, where m∗ is the spontaneous magnetization.
For a self-averaging observable QN both thermodynamic (described by the Gibbs dis-

tribution) and non-thermodynamic (produced by the random field) fluctuations vanish as
N → ∞. It seems useful to introduce exponents which indicate how fast that happens. The
exponent ρ, related to non-thermodynamic fluctuations, is defined by

〈QN − E〈QN 〉〉 = N−ρrN , (4)

as N → ∞, where the sequence of random variables rN converges to a random variable
with a proper, non-degenerate distribution. The exponent τ , indicating the magnitude of
thermodynamic fluctuations, is defined by

QN − E〈QN 〉 − N−ρrN = N−τ tN , (5)

as N → ∞, where, again, the sequence of random variables tN converges to a random vari-
able with a proper, non-degenerate distribution. The definitions of exponents ρ and τ gen-
eralize straightforwardly to the case of conditional self-averaging.

As a rule thermodynamic systems outside critical lines/points are collections of random
variables {xj }N

j=1 with short-range correlations. In this case one usually has self-averaging
with the exponents ρ = τ = 1

2 . More precisely,

mN = 1

N

N∑

j=1

xj = x + N− 1
2 rN + N− 1

2 tN .
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The exponents ρ and τ are not fundamentally novel quantities. For most commonly used
thermodynamic observables QN they are related in some way to the standard critical expo-
nents. The values of exponents for the magnetization of the spherical model are calculated
in this paper.

Somewhat different terminology was used in the papers [1, 17]. There self-averaging with
exponents ρ = τ = 1

2 is called strong self-averaging, while self-averaging with exponents
ρ ∈ ( 1

2 ,1) and τ ∈ ( 1
2 ,1) is called weak self-averaging.

Some general results on the behavior of models under the influence of random field
were obtained in the 70s and 80s by application of the renormalization-group ideas to the
Ginzburg–Landau model, see [2, 8]. In particular it was noticed that the random-field fluctu-
ations dominate over the thermodynamic fluctuations as the critical point is approached.
This observation suggests that the random-field fluctuations also dominate on the low-
temperature critical line, and hence one should have τ > ρ there. This is exactly what hap-
pens with the fluctuations of the magnetization of the spherical model, and we will see in
Sect. 6 that in this case ρ = 1

2 − 2
d

and τ = 1
2 − 1

d
.

The rest of the paper is organized as follows. Sect. 2 contains the exact definition of
the spherical model, the random field and the boundary conditions. It also contains some
well known technical results for the use in the later sections. Section 3 summarizes the
main results of the paper. In Sect. 4 we calculate the free energy of the spherical model as
an illustration of the application of saddle-point method in the low-temperature region. In
Sect. 5 we describe in details the properties of the spherical model (the random field {xj , j ∈
Zd}) in the infinite-volume limit. In Sect. 6 we provide an analogous detailed description
for the magnetization of the spherical model. The results of Sects. 5 and 6 in the absence
of the boundary field are re-derived in Sect. 7. The results of the paper are discussed in
Sect. 8.

2 The Model and Useful Facts

The spherical model describes a collection of random variables {xj , j ∈ Zd} placed at sites
of an integer d-dimensional lattice, Zd . Every site j ∈ Zd is specified by its d integer coor-
dinates (j1, j2, . . . , jd).

To define the distribution of random variables at all sites of the lattice, we first specify
the joint distribution for the random variables in a finite rectangle

Vn = {j ∈ Zd : 1 ≤ jν ≤ n, ν = 1,2, . . . , d}
containing N ≡ nd sites, and then pass to the limit n → ∞. To avoid unnecessary complica-
tions we impose periodic boundary conditions in dimensions 2,3, . . . , d . Thus the boundary
of the rectangle Vn is the set

Bn = {j ∈ Vn : j1 = 1, n}.

2.1 The Hamiltonian

The random variables located in the rectangle Vn interact with the boundary field, the exter-
nal random field, and each other via the Hamiltonian

Hn = −J
∑

j,k∈Vn

Tjkxjxk −
∑

j∈Vn

hjxj − b
∑

j∈Bn

xj ,
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where J > 0, Tjk are the elements of the nearest-neighbor interaction matrix, {hj , j ∈ Zd}
is a fixed realization of the external random field, and b is the boundary field.

2.2 The Interaction Matrix

The elements of the interaction matrix T̂ are given by

Tjk =
d∑

ν=1

J (ν)(jν, kν)
∏

l∈{1,2,...,d}\ν
δ(jl, kl),

where

δ(jl, kl) =
{

1, if jl = kl,

0, if jl �= kl,

is the Kronecker delta.
The coefficients J (1)(j1, k1) are the elements of the n × n tri-diagonal matrix

Ĵ (1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2 0 1

2 0
1
2 0

. . .

. . .
. . .

. . .

. . . 0 1
2

0 1
2 0 1

2
1
2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The coefficients J (ν)(jν, kν), for ν = 2,3, . . . , d , are the elements of the matrices Ĵ (ν) which
have extra 1

2 at the upper right and lower left corners (due to the periodic boundary condi-
tions)

Ĵ (ν) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2

1
2 0 1

2 0
1
2 0

. . .

. . .
. . .

. . .

. . . 0 1
2

0 1
2 0 1

2
1
2

1
2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of the matrix Ĵ (1) are given by

Λl = cos
πl

n + 1
, l = 1,2, . . . , n.

The corresponding orthonormal (that is, orthogonal and normalized) eigenvectors are given
by

v(l) =
{
v(l)

m =
√

2

n + 1
sin

πlm

n + 1

}n

m=1

, l = 1,2, . . . , n.
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The eigenvalues and orthonormal eigenvectors of the matrices Ĵ (ν), for ν = 2,3, . . . , d , are
given by

λl = cos
2π(l − 1)

n
, l = 1,2, . . . , n,

and

u(l) =
{
u(l)

m =
√

2

n
cos

[
2π(l − 1)(m − 1)

n
− π

4

]}n

m=1

, l = 1,2, . . . , n.

Finally, the eigenvalues of the interaction matrix T̂ are the sums of the eigenvalues of the
matrices Ĵ (ν)

λk = Λk1 +
d∑

ν=2

λkν , k ≡ (k1, k2, . . . , kd) ∈ Vn.

The corresponding orthonormal eigenvectors are the products of the eigenvectors of the
matrices Ĵ (ν)

w(k) =
{

w
(k)
j = v

(k1)

j1

d∏

ν=2

u
(kν )
jν

}

j∈Vn

, k ≡ (k1, k2, . . . , kd) ∈ Vn. (6)

2.3 The External Random Field

We assume that the coefficients {hj , j ∈ Zd} are a fixed realization of independent normal
random variables {hj , j ∈ Zd} with zero mean and variance h2. The assumptions of indepen-
dence and normal distribution are made to avoid unnecessary complications. The behavior
of the model is very different if the random variables {hj , j ∈ Zd} have, say, Cauchy dis-
tribution, or, if the random variables have strong negative correlations severely suppressing
fluctuations of sums like

∑
j∈Vn

hj . Nevertheless, we restrict our attention to the technically
convenient case of independent normal random variables where the fluctuations are neither
abnormally large, nor abnormally small.

2.4 The Gibbs Distribution

The distribution of the thermodynamic random variables {xj , j ∈ Vn} is specified by the
usual Gibbs density

p({xj , j ∈ Vn}) = e−βHn

Θn

,

with respect to the spherical “a priori” measure

μn(dx) = δ

(∑

j∈Vn

x2
j − N

) ∏

j∈Vn

dxj .

The normalization factor (partition function) Θn is given by

Θn =
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−βHnμn(dx). (7)
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2.5 Useful Estimates

Equations (8–12) below state well known results which are used throughout the paper. A rou-
tine analysis of the singularity at ω1 = ω2 = · · · = ωd = 0 shows that the function

W
(m)
d (z) ≡

∫ π

−π

. . .

∫ π

−π

1

(z − ∑d

ν=1 cosων)m

d∏

ν=1

dων

2π
< ∞ (8)

at z = d if d > 2m.
Let γ ∈ [0,2), ζ > 0, and zn = λmax + ζn−γ , then we have as n → ∞

1

N

∑

k∈Vn

1

(zn − λk)m
= W

(m)
d (zn) − 1

2n
�W

(m)
d (zn) + o[exp(−n1−γ /2c(ζ ))], (9)

where

�W
(m)
d (zn) ≡ W

(m)

d−1(zn − 1) + W
(m)

d−1(zn + 1) − 2W
(m)
d (zn),

and c(ζ ) is strictly positive and increasing for ζ > 0.
If γ = 2, ζ ≥ 0, and d > 4, then

1

N

∑

k∈Vn

′ 1

λmax + ζn−2 − λk

= W
(1)
d (d) − 1

2n
�W

(1)
d (d) − ζW

(2)
d (d)n−2 + o(n−2), (10)

as n → ∞, where the prime indicates that the summation does not involve k = (1,1, . . . ,1).
If d > 2m, and ζ ≥ 0, then

1

N

∑

k∈Vn

′ 1

(λmax + ζn−2 − λk)m
= W

(m)
d (d) + o(1), (11)

as n → ∞. Approximation of sums of the type (9), (10) by integrals was analyzed in [4, 7].
For an outline of a method particularly suited for the above sums see [13].

If m > 0 and d > 2m, then

∫ π

−π

· · ·
∫ π

−π

exp(i
∑d

ν=1 xνων)

(d − ∑d

ν=1 cosων)m

d∏

ν=1

dων

2π
∼ �(d/2 − m)

2mπd/2�(m)

(
d∑

ν=1

x2
ν

)m−d/2

, (12)

as
∑d

ν=1 x2
ν → ∞. For a derivation of the above asymptotic formula in the case m = 1 see,

e.g., [9]. The method used in [9] can be also applied in the case m > 0.
Finally, a direct numerical computation of the multiple integrals W

(m)
d (z) is an awkward

task. Fortunately, for m > 0 and z ≥ d , it is reduced to the following integral of the Bessel
function I0(x):

W
(m)
d (z) = 1

�(m)

∫ ∞

0
dv vm−1e−zvI d

0 (v).

3 The Main Results

Usually thermodynamic properties are derived in the limit of an infinitely large lattice. In
our case the results are most conveniently formulated in a continuum limit. We choose to
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use the version of continuum limit where the limiting configurations are random functions
defined on the d-dimensional rectangle [0,1]d :

{x(γ )}γ∈[0,1]d ≡ {x(γ1, γ2, . . . , γd)}γ1,γ2,...,γd∈[0,1].

For any γ ∈ [0,1]d the random variable x(γ ) is defined as the following limit in distribution

x(γ )
d= lim

n→∞x([γ1n],[γ2n],...,[γdn]),

where [y], is the integer part of y.
Thermodynamic random variables x(γ ) and x(δ) are limits of the random sequences

x([γ1n],[γ2n],...,[γdn]) and x([δ1n],[δ2n],...,[δdn]) separated by a distance of order n. Hence, in the
continuum limit the random variables x(γ ) and x(δ) with γ �= δ are independent due to the
exponential/power-law decay of thermodynamic correlations in the high/low temperature
region.

Unless explicitly stated otherwise, in this paper we consider dimensions d ≥ 5 and in-
verse temperatures β > βc , where β−1

c is the critical temperature of the spherical model in
external random field, see the paper by Pastur [14].

Denote ϕ(1,1,...,1) the projection of the external random field on the eigenvector w(1,1,...,1)

corresponding to the maximal eigenvalue of the interaction matrix

ϕ(1,1,...,1) =
√

2

nd−1(n + 1)

∑

l∈Vn

sin
πl1

n + 1
hl.

Recall that the external field {hl, l ∈ Zd} is a realizations of the random field {hl , l ∈ Zd} of
independent normal random variables with Ehl = 0, Eh2

l = h2, for any l ∈ Zd . Everywhere
below we will use the notation N (a, b2) to denote thermodynamic normal random variables
with mean a and variance b2, which are independent from the external random field. The
symbol q will be used to denote a realization of a non-thermodynamic normal random vari-
able q . The value of q is fixed once we fix a realization of the random field, and q is always
independent of N (a, b2).

The main results of the paper can be stated as follows.

1. In the absence of the boundary field, b = 0, the random variables x(γ ) have normal
distributions with the expected values

〈x(γ )〉 = sgn[ϕ(1,1,...,1)] sin(πγ1)

√(
1 − βc

β

)
W

(1)
d (d)

βcJ
+ qγ ,

and the variances

〈x2(γ )〉 − 〈x(γ )〉2 = 1

2βJ
W

(1)
d (d),

where qγ are independent realizations of zero-mean normal random variables with the com-
mon variance

(
h

2J

)2

W
(2)
d (d).
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2. For a fixed realization of the external random field, the law of large numbers is valid
for the normalized sums

mn ≡ 1

N

∑

j∈Vn

xj ,

as n → ∞. The convergence to the limiting value can be summarized by the following
asymptotic formula

mn ∼ sgn[ϕ(1,1,...,1)] 2

π

√(
1 − βc

β

)
W

(1)
d (d)

βcJ
+ n2−d/2qn

+ n−d/4

√|ϕ(1,1,...,1)|
Nn

(
0,

8

π2β

√(
1 − βc

β

)
W

(1)
d (d)

2βcJ

)
,

where qn is a realization of a zero-mean normal random variable with the variance

2
7π2 − 69

3π6

(
h

2J

)2

.

Hence, the magnetization mn is (only) conditionally self-averaging with the exponents ρ =
1
2 − 2

d
and τ = 1

4 .
3. For b �= 0 the random variables x(γ ) have normal distributions with expected values

〈x(γ )〉 = b

J

cosh[(1 − 2γ1)
√

ζ0]
cosh

√
ζ0

+ qγ ,

and variances

〈x2(γ )〉 − 〈x(γ )〉2 = 1

2βJ
W

(1)
d (d),

where ζ0 is a solution of (16), and qγ are independent realizations of zero-mean normal
random variables with the common variance

(
h

2J

)2

W
(2)
d (d).

4. For b �= 0, the law of large numbers is valid for the normalized sums

mn ≡ 1

N

∑

j∈Vn

xj ,

as n → ∞. The convergence to the limiting value can be summarized by the following
asymptotic formula

mn ∼ b

J

tanh
√

ζ0√
ζ0

+ n2−d/2qn + n1−d/2Nn

(
0,

1

4βJζ0

(
1 − tanh

√
ζ0√

ζ0

))
,

where qn is a realization of a zero-mean normal random variable with the variance (30).
Hence, the magnetization mn is self-averaging with the exponents ρ = 1

2 − 2
d

and τ = 1
2 − 1

d
.
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4 The Free Energy

The calculation of free energy, expected values and correlation functions for the spherical
models is reduced, in a routine fashion, to calculation of the large-n asymptotics of an inte-
gral. In this section we find the large-n asymptotics for the free energy

fn = − 1

βnd
lnΘn.

A particular attention will be paid to O(n−2) asymptotics of fn, which, as it turns out,
determines thermodynamic properties of the model below the critical temperature.

The introduction of new integration variables {yj }j∈Vn in (7) via the orthogonal transfor-
mation

xj =
∑

k∈Vn

w
(k)
j yk, j ∈ Vn,

where the eigenvectors {w(k)
j }j∈Vn are given by (6), diagonalizes the interaction matrix.

Therefore, we obtain the following formula for the partition function

Θn =
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−βH̃n(y)μn(dy),

where

H̃n(y) = −J
∑

k∈Vn

λky
2
k −

∑

k∈Vn

ϕkyk − b
∑

k∈Vn

αkyk,

ϕk =
∑

j∈Vn

hjw
(k)
j , and αk =

∑

j∈Bn

w
(k)
j .

Since the vectors {w(k)
j }j∈Vn , k ∈ Vn are orthonormal, the random variables ϕk =

∑
j∈Vn

hjw
(k)
j , are independent normal random variables with zero mean and variance h2.

Therefore, we can treat the coefficients ϕk , k ∈ Vn as realizations of independent normal
random variables.

A direct calculation of the coefficients αk , k ≡ (k1, k2, . . . , kd) ∈ Vn (using only the for-
mula for the sum of a geometric series) yields

αk = 2n(d−1)/2

√
2

n + 1
δ(k2,1) · · · δ(kd,1) ×

{
sin πk1

n+1 , if k1 is odd,

0, if k1 is even.

The integral representation for the delta function

δ

(∑

j∈Vn

y2
j − N

)
= 1

2πi

∫ +i∞

−i∞
ds exp

[
s

(
N −

∑

j∈Vn

y2
j

)]
,

in the “a priori” measure allows one to perform integration over the variables yj , j ∈ Vn.
However, we can switch the order of integration over the variables yj , j ∈ Vn and s only
after a shift of the integration contour for s to the right. The shift should assure that the
real part of the quadratic form involving the variables yj , j ∈ Vn is negatively defined. The
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switching of integration order, integration over yj , j ∈ Vn, and the introduction of a new
integration variable z via s = βJz yields

Θn = βJ

2πi

(
π

βJ

)N/2 ∫ +i∞+c

−i∞+c

dz exp[NβΦn(z)], (13)

where

Φn(z) = Jz − 1

2βN

∑

k∈Vn

ln(z − λk) + 1

4JN

∑

k∈Vn

(ϕk + bαk)
2

z − λk

,

and c > d is the shift of the integration contour mentioned above.
The large-n asymptotics of the integral (13) can be found using the saddle-point method.

The saddle point of the integrand is a solution of the equation

Φ ′
n(z) = J − 1

2βN

∑

k∈Vn

1

z − λk

− 1

4JN

∑

k∈Vn

(
ϕk + bαk

z − λk

)2

= 0. (14)

For any z > d , as n → ∞, the sequence of the derivatives Φ ′
n(z) converges, with probability

1, to

Φ ′(z) = J − 1

2β
W

(1)
d (z) − h2

4J
W

(2)
d (z),

where the functions W
(m)
d (z) are defined in (8). The function Φ ′(z) increases monotonically

with z on [d,∞), and the location of its zeroes depends on the dimension d of the lattice.
Namely, if d ≤ 4, then the function Φ ′(z) has exactly one zero on the interval [d,∞) at a
point z∗ > d , for any β > 0. If d ≥ 5 and the variance of the external field, h2, is sufficiently
small, then there exists a critical value

βc = 1

2J

W
(1)
d (d)

1 − ( h
2J

)2W
(2)
d (d)

of the parameter β , see [14]. If β ∈ (0, βc) (the high-temperature regime), then the function
Φ ′(z) still has exactly one zero on the interval [d,∞) at a point z∗ > d . While if β > βc (the
low-temperature regime), then the function Φ ′(z) is strictly positive on the interval [d,∞).

The application of the saddle-point method for the integral (13) is fairly straightforward
when the saddle point z∗ is greater than d , see [5]. Therefore, in this paper we consider
only the low-temperature regime and d ≥ 5. When β ≥ βc , the function Φn(z) still attains
its minimum on the interval (λmax,∞) at a point z∗

n > λmax, where λmax = d − 1 + cos π
n+1

is the maximum eigenvalue of the interaction matrix T̂ . However, the sequence of saddle
points z∗

n approaches the branch point of the integrand at z = λmax, and the application of
the saddle-point method becomes a bit more tricky.

To be able to apply the saddle-point method we have to find a change of variables z =
λmax + ζn−γ , such that the sequence of rescaled saddle-points ζ ∗

n = (z∗
n −λmax)n

γ converges
to a positive limit ζ ∗ > 0 as n → ∞. Then, the application of the saddle-point method for
the integral over ζ becomes straightforward again. Note that the above search for a proper
change of variables has an important physical meaning—nγ/2/

√
ζ ∗ is the correlation length

of the model.
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In order to find the proper value of γ we have to analyze the sums in (14). The large-n
asymptotics of the sum

Σ1(z) ≡ 1

N

∑

k∈Vn

1

z − λk

,

when z = λmax + ζn−γ and ζ > 0, follows from (9) and (10). Namely, as n → ∞,

Σ1(λmax + ζn−γ ) = 1

ζnd−γ
+ W

(1)
d (d) + O(n−min(γ,1)).

To find the large-n asymptotics of the sum

Σ2(z) ≡ 1

N

∑

k∈Vn

ϕ2
k

(z − λk)2

when z = λmax + ζn−γ , we have to use the law of large numbers. First, we take out the term
corresponding to k = (1,1, . . . ,1) and rearrange the sum as follows

Σ2(λmax + ζn−γ ) = ϕ2
(1,1,...,1)

ζ 2nd−2γ
+ 1

N

∑

k∈Vn

′ h2

(λmax + ζn−γ − λk)2

+ 1

N

∑

k∈Vn

′ ϕ2
k − h2

(λmax + ζn−γ − λk)2
.

For ζ ≥ 0, (9) and (11) yield as n → ∞
1

N

∑

k∈Vn

′ 1

(λmax + ζn−γ − λk)2
= W

(2)
d (d) + o(1).

Let {ξj,n}n ∞
j=1,n=1 be a triangular array of independent random variables with zero ex-

pected values. The condition

n∑

j=1

E|ξj,n|s → 0, for some s ∈ (1,2],

as n → ∞, is sufficient for the validity of the law of large numbers

n∑

j=1

ξj,n → 0, in probability,

see, e.g., [6]. Therefore (8), (9), and (11) imply

1

N

∑

k∈Vn

′ ϕ2
k − h2

(λmax + ζn−γ − λk)2
→ 0, in probability,

as n → ∞, if d > 4, and ζ ≥ 0. Summarizing the above we obtain

Σ2(λmax + ζn−γ ) = ϕ2
(1,1,...,1)

ζ 2nd−2γ
+ h2W

(2)
d (d) + o(1),

as n → ∞.
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The sum

Σ3(z) ≡ 1

N

∑

k∈Vn

ϕkαk

(z − λk)2
,

with z = λmax + ζn−γ , is a realization of a normal random variable with zero mean and the
variance

σ 2
n (ζ ) = 1

N2

∑

k∈Vn

h2α2
k

(λmax + ζn−γ − λk)4
.

It is possible to find a relatively simple expression for the variance

σ 2
n (ζ ) = 2h2

nd+1(n + 1)

n∑

k=1

(1 + (−1)k+1)2 sin2 πk
n+1

(cos π
n+1 + ζn−γ − cos πk

n+1 )4
.

First, note the identity, see [13],

1

N

∑

k∈Vn

α2
k

z − λk

= 4x(z)

n

xn−1(z) + 1

xn+1(z) + 1
, (15)

where

x(z) = 1 + z − d + √
(z − d)(2 + z − d).

On differentiating (15) over z three times we obtain

1

N2

∑

k∈Vn

α2
k

(z − λk)4

= 1

nd+1

2

(z − d)(2 + z − d)

[
1 + z − d

[(z − d)(2 + z − d)]3/2

xn+1(z) − 1

xn+1(z) + 1

− 4(n + 1)3x2(n+1)(z)

(xn+1(z) + 1)4
+ 2(n + 1)x(n+1)(z)

(xn+1(z) + 1)2

(
n(n + 2)

3
− 1

(z − d)(2 + z − d)

)]
.

Hence, if γ ∈ (0,2), then

σ 2
n (ζ ) ∼ 1

nd+1−5γ /2

2h2

(2ζ )5/2
,

as n → ∞, while if γ = 2, then λmax + ζn−γ ∼ d − 1
2 π2n−2 + ζn−2, and σ 2

n (ζ ) ∼
n4−dh2 t (ζ − 1

2π2), where

t (ζ ) = 1

ζ

(
1

(2ζ )3/2
tanh

√
1
2ζ − 1

4 cosh4
√

1
2 ζ

+ 2ζ − 3

12ζ cosh2
√

1
2 ζ

)
.

The function t (ζ ) (and similar functions below) has only a removable singularity at ζ = 0,
and the analytic continuation is to be used for negative values of ζ . Thus

Σ3(λmax + ζn−γ ) ∼ O(n5γ /4−(d+1)/2)

does not produce a non-vanishing contribution to the saddle-point equation if γ ≤ 2.
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It is also possible to obtain a simple formula for the sum

Σ4(z) = 1

N

∑

k∈Vn

α2
k

(z − λk)2

by differentiating (15) over z. The differentiation yields

Σ4(z) = 8

n

[
xn−1(z) − 1

xn+1(z) + 1

x2(z)

x2(z) − 1
+ (n + 1)xn+1(z)

(xn+1(z) + 1)2

]
.

On replacing z by λmax + ζn−γ we obtain

Σ4(λmax + ζn−γ ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

4n−1+γ /2
√

1
2 ζ

, if γ ∈ (0,2);

2 tanh
√

1
2 (ζ− 1

2 π2)
√

1
2 (ζ− 1

2 π2)
+ 2

cosh2
√

1
2 (ζ− 1

2 π2)
, if γ = 2.

Thus the sum Σ4(z) is dominant among the four sums Σl(z), l = 1,2,3,4 (if b �= 0), in the
sense that it is Σ4(z) that controls the location of the saddle point z∗

n in the low-temperature
region. Indeed, the sum Σ4(z) produces a non-vanishing contribution to the saddle-point
equation already in the scale z = λmax + ζ/n2. Moreover, the extra contribution produced by
Σ4(z) prevents the rescaled saddle-point ζ ∗

n approaching the branch-point at ζ = 0, where
the remaining sums could, potentially, yield non-vanishing contributions to the saddle-point
equation.

On introduction of the new integration variable ζ in (13) via z = λmax + ζn−2 we obtain

Θn = βJ

2n2πi

(
π

βJ

)N/2 ∫ +i∞+ζ0

−i∞+ζ0

dζ exp[NβΦn(λmax + ζn−2)].

The saddle-point of the integrand is ζ ∗ = 2ζ0 + 1
2π2, where ζ0 is a solution of the equation

1 − 1

2βJ
W

(1)
d (d) −

(
h

2J

)2

W
(2)
d (d) = 2

(
b

2J

)2( tanh
√

ζ0√
ζ0

+ 1

cosh2 √
ζ0

)
. (16)

Application of the saddle-point method yields

−fn = 1

βnd
lnΘn = 1

2β
ln

π

βJ
+ Φ(d) + n−1φ1 + n−2φ2(2ζ0) + o(n−2),

as n → ∞, where

Φ(d) = Jd − 1

2β
Ld(d) + h2

4J
W

(1)
d (d),

Ld(z) =
∫ π

−π

· · ·
∫ π

−π

ln

(
z −

d∑

ν=1

cosων

)
d∏

l=1

dωl

2π
,

φ1 = 1

4β
�Ld(d) − h2

8J
�W

(1)
d (d) + b2

J
,

φ2(ζ ) =
(

J − 1

2β
W

(1)
d (d) − h2

4J
W

(2)
d (d)

)
ζ − b2

J

√
2ζ tanh

√
1

2
ζ .
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The function Φ(z) determines the thermodynamics of the model in the high-temperature
region. The term φ1 appears because of to the lack of periodicity in one of the dimensions.
The function φ2(ζ ) is responsible for the thermodynamic properties of the model on the
low-temperature critical line.

5 Individual Distributions

To find the individual distributions of the random variables {xj , j ∈ Vn} we calculate the
corresponding characteristic functions

κj (t) = 〈exp(itxj )〉.

The saddle-point method described in the previous section yields the following large-n as-
ymptotics

κj (t) ∼ exp

[
− t2

4βJ

∑

k∈Vn

(w
(k)
j )2

z∗
n − λk

+ it

2J

∑

k∈Vn

ϕkw
(k)
j + bαkw

(k)
j

z∗
n − λk

]
. (17)

Therefore, for large values of n, the individual distributions of the random variables {xj , j ∈
Vn} are nearly normal with mean values

μj = 1

2J

∑

k∈Vn

ϕkw
(k)
j + bαkw

(k)
j

z∗
n − λk

, (18)

and variances

σ 2
j = 1

2βJ

∑

k∈Vn

(w
(k)
j )2

z∗
n − λk

.

On substitution z∗
n = d + ζ ∗n−2 one obtains

σ 2
j → 1

2βJ

∫ π

−π

· · ·
∫ π

−π

1 − cos(j1ω1)

d − ∑d

ν=1 cosων

d∏

l=1

dωl

2π
,

as n → ∞. Thus, in the low-temperature region and in the presence of the boundary con-
ditions, b �= 0, the variances of the thermodynamic random variables xj are not affected by
the random field {hl, l ∈ Zd}. As j1 increases,

∫ π

−π

· · ·
∫ π

−π

cos(j1ω1)

d − ∑d

ν=1 cosων

d∏

l=1

dωl

2π
∼ �(d/2 − 1)

2πd/2jd−2
1

→ 0.

Hence, only random variables near the boundary have variances noticeably different from
the bulk value

σ 2
bulk ≡ 1

2βJ
W

(1)
d (d).
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The first half of the sum in (18)

qj ≡ 1

2J

∑

k∈Vn

ϕkw
(k)
j

z∗
n − λk

,

describes the shift in the expected value of xj due to the external random field. It is a real-
ization of a normal random variable with zero mean and variance

V 2
j ≡

(
h

2J

)2 ∑

k∈Vn

(
w

(k)
j

z∗
n − λk

)2

.

As n → ∞ the variance V 2
j tends to

(
h

2J

)2 ∫ π

−π

· · ·
∫ π

−π

1 − cos(j1ω1)

(d − ∑d

ν=1 cosων)2

d∏

l=1

dωl

2π
.

For d > 4 we have

∫ π

−π

· · ·
∫ π

−π

cos(j1ω1)

(d − ∑d

ν=1 cosων)2

d∏

l=1

dωl

2π
∼ �(d/2 − 2)

4πd/2jd−4
1

,

as j1 → ∞. Hence, the variance V 2
j also approaches its bulk value

V 2
bulk ≡

(
h

2J

)2

W
(2)
d (d), (19)

as we move away from the boundary.
The second half of the sum in (18),

μbc
j ≡ b

2J

∑

k∈Vn

αkw
(k)
j

z∗
n − λk

,

is the shift in the expected value of the thermodynamic random variables xj due to the
influence of the boundary conditions. An application of the “contour summation” technique,
see [13], yields the following simple formula

μbc
j = b

J

xn+1−j1(z∗
n) + xj1(z∗

n)

xn+1(z∗
n) + 1

.

The large-n limit of μbc
j depends on the location of the node j ≡ (j1, j2, . . . , jd). Assuming

j1 ∼ γ1n as n → ∞, we obtain (recall that z∗
n = λmax + ζ ∗n−2 ∼ d + 2ζ0n

−2 in the low-
temperature region, see (16))

lim
n→∞μbc

j = b

J

cosh[(1 − 2γ1)
√

ζ0]
cosh

√
ζ0

≡ μbc(γ1).

The characteristic function of an arbitrary pair (xj , xl) is given by

κj,l(t, s) = 〈exp(itxj + isxl)〉 ∼ κj (t)κl(s) exp

[
− ts

2βJ

∑

k∈Vn

w
(k)
j w

(k)
l

z∗
n − λk

]
,
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as n → ∞. Hence, for large values of n, the joint distribution of xj and xl is nearly normal
with the covariance

cov(xj , xl) ∼ 1

2βJ

∑

k∈Vn

w
(k)
j w

(k)
l

z∗
n − λk

.

Since z∗
n = λmax + ζ ∗n−2, we have (ignoring thin layers near the boundaries)

lim
n→∞ cov(xj , xl) = 1

2βJ

∫ π

−π

· · ·
∫ π

−π

exp[i ∑d

ν=1(jν − lν)ων]
d − ∑d

ν=1 cosων

d∏

ν=1

dων

2π
.

Thus, the covariance cov(xj , xl) shows the usual, for the critical line of the ordinary spher-
ical model, power-law decay with the distance r2

j,l ≡ ∑d

ν=1(jν − lν)
2 between the nodes j

and l. Indeed, using (12) we obtain

cov(xj , xl) ∼ �(d/2 − 1)

4βJπd/2rd−2
j,l

, (20)

if 1 � rj,l � n.
Summarizing, we conclude that the structure of random variables {xj , j ∈ Vn} is fairly

simple. Ignoring thin layers near boundaries, we have in the limit n → ∞
xj = qj +Nj (μ

bc(γ1), σ
2
bulk),

where qj is a realization of a (non-thermodynamic) normal random variable with zero mean
and the variance V 2

bulk and Nj (a, b2) is a thermodynamic normal random variable with the
mean a and the variance b2, see Fig. 1.

In the presence of the boundary conditions, apart from the global influence through the
saddle point ζ ∗, the external random field {hj , j ∈ Vn} produces only additive contributions

Fig. 1 A line of a 5-D realization of thermodynamic random variables {xj , j ∈ Vn} (discs) for β > βc .
The picture also contains the corresponding realization of the random field {qj , j ∈ Vn} (circles) driving the
random variables at very low temperatures
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Fig. 2 A line of a 5-D realization of the random field {qj , j ∈ Vn} for β > βc . In comparison with inde-
pendent random variables the field {qj , j ∈ Vn} has a substantial inertia—positive/negative values tend to be
surrounded by positive/negative values

(random shifts) qj to the thermodynamic random variables {xj , j ∈ Vn}. The properties of
the (non-thermodynamic) random variables {qj , j ∈ Vn} generating the shifts are fairly in-
teresting. At the critical temperature βc the random field {qj , j ∈ Vn} undergoes a transition
into a phase with long-range correlations, see Fig. 2.

Indeed the covariances of the random variables {qj , j ∈ Vn} are given by

cov(qj ,q l ) =
(

h

2J

)2 ∑

k∈Vn

w
(k)
j w

(k)
l

(z∗
n − λk)2

.

Passing to the limit n → ∞ we obtain

lim
n→∞ cov(qj ,q l ) =

(
h

2J

)2 ∫ π

−π

· · ·
∫ π

−π

exp[i ∑d

ν=1(jν − lν)ων]
(z∗ − ∑d

ν=1 cosων)2

d∏

ν=1

dων

2π
.

If β < βc , then z∗ > d and the above integral decays exponentially with the distance rj,l

between the nodes j and l. If β ≥ βc , then z∗ = d and (12) yields the power-law decay

cov(qj ,q l ) ∼ h2�(d/2 − 2)

16J 2πd/2rd−4
j,l

.

Note that the correlations of the random field {qj , j ∈ Vn} decay noticeably slower than
the correlations of the thermodynamic random variables, see (20). This slow decay of the
covariances is the reason for the dominance of the random-field fluctuations over the ther-
modynamic fluctuations.
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6 Macroscopic Observables

Our aim in this section is to establish the law of large numbers for the normalized sums
(magnetization)

mn ≡ 1

N

∑

j∈Vn

xj , (21)

and to study fluctuations (the central limit theorem) of these sums around the limiting value.
The corresponding characteristic functions are given by

κn(t) =
〈
exp

(
it

N

∑

j∈Vn

xj

)〉
.

The large-n asymptotics of κn(t) is calculated using the technique of the previous section.
The saddle-point method yields

κn(t) ∼ exp

(
− t2

4βJN2

∑

k∈Vn

η2
k

z∗
n − λk

+ it

2JN

∑

k∈Vn

ϕkηk + bαkηk

z∗
n − λk

)
, (22)

where (see (6))

ηk =
∑

j∈Vn

w
(k)
j = n(d−1)/2

√
2

n + 1

1 − (−1)k1

2

sin πk1
n+1

1 − cos πk1
n+1

δ(k2,1) · · · δ(kd,1),

for k ≡ (k1, k2, . . . , kd) ∈ Vn.
Thus, for large values of n, the distribution of the magnetization (21) is approximately

normal with the mean value

μn = 1

2JN

∑

k∈Vn

ϕkηk + bαkηk

z∗
n − λk

. (23)

The sum

1

2JN

∑

k∈Vn

ϕkηk

z∗
n − λk

= n−(d+1)/2

4J

√
2

n + 1

n∑

l=1

ϕ(l,1,1,...,1)[1 − (−1)l]
1 + z∗

n − d − cos πl
n+1

sin πl
n+1

1 − cos πl
n+1

,

is the shift in the expected value of the magnetization (21) caused by the external random
field. It is a realization of a normal random variable with zero mean and the variance

S2
n ≡ h2n−d−1

4J 2(n + 1)

n∑

l=1

1 − (−1)l

(1 + z∗
n − d − cos πl

n+1 )2

sin2 πl
n+1

(1 − cos πl
n+1 )2

.

On calculating the sum over l, see [13], we obtain

S2
n = h2n−d−1

2J 2(z∗
n − d)2

[
n

2
− 2xn+1(z∗

n) + xn(z∗
n) − x(z∗

n) − 2

(xn+1(z∗
n) + 1)(x(z∗

n) − x−1(z∗
n))

+ (n + 1)xn+1(z∗
n)

(xn+1(z∗
n) + 1)2

]
. (24)
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In the low-temperature region we have z∗
n = λmax + ζ ∗n−2 ∼ d + 2ζ0n

−2, see (16), therefore

S2
n ∼

(
h

2J

)2
n4−d

4ζ 2
0

(
1 − 3 tanh

√
ζ0

2
√

ζ0
+ 1

2 cosh2 √
ζ0

)
, (25)

as n → ∞.
The sum

b

2JN

∑

k∈Vn

αkηk

z∗
n − λk

= b

Jn

2x(z∗
n)

x(z∗
n) − 1

xn(z∗
n) − 1

xn+1(z∗
n) + 1

,

is the shift in the expected value of the magnetization (21) caused by the boundary condi-
tions. On substitution z∗

n = λmax + ζ ∗n−2 one obtains

b

2JN

∑

k∈Vn

αkηk

z∗
n − λk

∼ b

J

tanh
√

ζ0√
ζ0

, (26)

as n → ∞.
Let’s now look at the variance of the magnetization. According to (22) it is given by

σ 2 ≡ 1

2βJN2

∑

k∈Vn

η2
k

z∗
n − λk

= n−d−1

2βJ (n + 1)

n∑

l=1

1 − (−1)l

1 + z∗
n − d − cos πl

n+1

sin2 πl
n+1

(1 − cos πl
n+1 )2

.

The remaining sum over l can be calculated exactly, and we obtain the following expression
for the variance

σ 2 = n−d−1

2βJ (z∗
n − d)

[
n − 2x(z∗

n)(x
n(z∗

n) − 1)

(x(z∗
n) − 1)(xn+1(z∗

n) + 1)

]
. (27)

On substitution of z∗
n = λmax + ζ ∗n−2 for the saddle-point one obtains

σ 2 ∼ n2−d

4βJζ0

(
1 − tanh

√
ζ0√

ζ0

)
, (28)

as n → ∞.
Summarizing the above we obtain the following expression for the magnetization

mn ∼ b

J

tanh
√

ζ0√
ζ0

+ n2−d/2qn + n1−d/2Nn

(
0,

1

4βJζ0

(
1 − tanh

√
ζ0√

ζ0

))
, (29)

where qn is a realization of a zero-mean normal random variable with the variance

(
h

2J

)2 1

4ζ 2
0

(
1 − 3 tanh

√
ζ0

2
√

ζ0
+ 1

2 cosh2 √
ζ0

)
, (30)

and Nn(μ, v2) is a thermodynamic normal random variable with mean μ and variance v2.
Therefore, the magnetization of the spherical model is self-averaging (for b �= 0) with the
exponents ρ = 1

2 − 2
d

and τ = 1
2 − 1

d
. The limiting magnetization m = limn→∞ mn as a

function of the boundary field b is shown on Fig. 3.
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Fig. 3 The infinite-lattice magnetization m = limn→∞ mn as a function of the normalized boundary field

b/J , for d = 5, βJ = 2, and h/J = 0.5. The left/right limits at b = 0 are given by ∓ 2
√

2
π

√
1 − βc

β

7 The Distributions for Zero Boundary Field

As it is clear from previous sections a non-zero boundary field dominates over the (zero-
mean) random field in the low-temperature regime. Therefore in this section we consider
the case of zero boundary field.

If b = 0, then the saddle-point equation for the integral (13) is given by

Φ ′
n(z) ≡ J − 1

2βN

∑

k∈Vn

1

z − λk

− 1

4JN

∑

k∈Vn

(
ϕk

z − λk

)2

= 0. (31)

Again, the saddle-point z∗
n drifts towards the branch-point of the integrand in the scale where

the terms corresponding to k = (1,1, . . . ,1) produce a non-vanishing contribution to Φ ′
n(z).

As is obvious from (31), that happens in the scale z = λ(1,1,...,1) + ζn−d/2. The distance from
the saddle point z∗

n = λ(1,1,...,1) + ζ ∗n−d/2 to the eigenvalues λk with k �= (1,1, . . . ,1) is at
least of the order O(n−2). Therefore there are no additional non-vanishing contribution to
the saddle-point equation from those eigenvalues.

In the scale z = λ(1,1,...,1) + ζn−d/2 we obtain the following saddle-point equation in the
limit n → ∞

1 − 1

2βJ
W

(1)
d (d) −

(
h

2J

)2

W
(2)
d (d) − 1

4J 2

ϕ2
(1,1,...,1)

ζ 2
= 0.

The positive solution of the above equation is given by

ζ ∗ = |ϕ(1,1,...,1)|
2J

√
(1 − βc

β
) 1

2Jβc
W

(1)
d (d)

.
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The location of the saddle-point z∗
n, as n → ∞, is given by

z∗
n ∼ d − 1 + cos

π

n + 1
+ ζ ∗n−d/2.

Evaluation of the characteristic function (17) at z∗
n shows that the thermodynamic vari-

ables xj have normal distributions with the expected values

μj = 1

2J

ϕ(1,1,...,1)w
(1,1,...,1)
j

z∗
n − λ(1,1,...,1)

+ 1

2J

∑

k∈Vn\(1,1,...,1)

ϕkw
(k)
j

z∗
n − λk

,

and variances

σ 2
j = 1

2βJ

∑

k∈Vn

(w
(k)
j )2

z∗
n − λk

.

Assuming that j = (j1, j2, . . . , jd), and that for k = 1,2, . . . , d we have jk ∼ γkn with
γk ∈ (0,1), we obtain

lim
n→∞μj = sgn[ϕ(1,1,...,1)] sin(πγ1)

√(
1 − βc

β

)
W

(1)
d (d)

βcJ
+ qγ , (32)

where γ ≡ (γ1, γ2, . . . , γd), and qγ are realizations of independent zero-mean normal ran-
dom variables with the variance V 2

bulk given by (19). An important feature of (32) is the term
sgnϕ(1,1,...,1) common to all expected values μj . This term is the reason for the absence of
conventional self-averaging for the normalized sums (magnetization)

mn ≡ 1

N

∑

j∈Vn

xj . (33)

On substitution of the saddle point z∗
n = λ(1,1,...,1) + ζ ∗n−d/2 in (22) we see that, as

n → ∞, the distribution of the magnetization (33) is asymptotically normal with the ex-
pected value

μn = 1

2JN

∑

k∈Vn

ϕkηk

z∗
n − λk

∼ sgn[ϕ(1,1,...,1)] 2

π

√(
1 − βc

β

)
W

(1)
d (d)

βcJ
+ 1

2JN

∑

k∈Vn\(1,1,...,1)

ϕkηk

z∗
n − λk

.

On subtracting the contribution of the maximum eigenvalue from (24) one finds that the
remaining sum over k is a realization of a normal random variable with zero mean and the
variance

S2
n ∼ 2

7π2 − 69

3π6

(
h

2J

)2

n4−d ,

as n → ∞.
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On substitution of the saddle point z∗
n = λ(1,1,...,1) + ζ ∗n−d/2 in (27) we find that the

thermodynamic variance of the normalized sums (33) is given by

σ 2
n ∼ 8

π2

1

|ϕ(1,1,...,1)|βnd/2

√(
1 − βc

β

)
W

(1)
d (d)

2βcJ
.

as n → ∞.
Summarizing the above we obtain the following expression for the magnetization

mn = sgn[ϕ(1,1,...,1)] 2

π

√(
1 − βc

β

)
W

(1)
d (d)

βcJ
+ n2−d/2qn

+ n−d/4

√|ϕ(1,1,...,1)|
Nn

(
0,

8

π2β

√(
1 − βc

β

)
W

(1)
d (d)

2βcJ

)
, (34)

where qn is a realization of a zero-mean normal random variable with the variance

2
7π2 − 69

3π6

(
h

2J

)2

,

and Nn(0, v2) is a zero-mean thermodynamic normal random variable with variance v2.
Thus, in the absence of the boundary field, the magnetization of the spherical model is
conditionally self-averaging with the exponents ρ = 1

2 − 2
d

and τ = 1
4 .

8 Discussion and Concluding Remarks

It was shown in the paper [3] that there are problems with almost sure convergence of Gibbs
states for the random-field Curie–Weiss model in the infinite-volume limit. In fact, below
the critical temperature, the limits of thermodynamic averages 〈sj 〉N do not exist, almost
surely, as the volume N tends to infinity. A possible solution of the convergence problem
was also proposed: it is necessary to consider the limits of distributions of 〈sj 〉N , which, after
some minor technical efforts, lead to correctly defined random infinite-volume Gibbs states.
The same problem exists in the spherical model, and, most likely, in such often considered
models as the Ising model and O(n) models. Namely, for b = 0, limn→∞〈xj 〉n does not
exist almost surely, although it exists in distribution. The results of the present paper show
that switching on a homogeneous boundary field rectifies the problem with almost sure
convergence. Namely, for b �= 0, limn→∞〈xj 〉n exist almost surely, which (together with
convergence of higher correlation functions) means that the corresponding limit Gibbs state
exists for almost all realizations of the random field {hj , j ∈ Zd}.

At approximately the same time, Newman and Stein [10] pointed out that the absence of
convergence of local thermodynamic averages, like 〈sj 〉N , is a natural occurrence in many
disordered systems. They call this phenomenon the chaotic size dependence. Somewhat
later, Newman and Stein also proposed their own solution of the problem with infinite-
volume Gibbs states [11]. Instead of looking at distributions of local averages like 〈sj 〉N
they choose to look at the empirical distributions

FN(y) ≡ N−1#{k ∈ {1,2, . . . ,N} : 〈sj 〉k ≤ y},
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for a fixed realization of randomness. Assuming ergodicity we have

lim
N→∞

FN(y) = lim
N→∞

Pr[〈sj 〉N ≤ y],

hence, both constructions provide the same result: a random infinite-volume Gibbs state.
Newman and Stein call the random Gibbs state the metastate.

The authors of the paper [1] investigated self-averaging using the ideas of renormaliza-
tion group theory. They concluded that there are universality classes of models within which
a particular non-self-averaging thermodynamic observable has the same distribution in the
thermodynamic limit. The results of the present paper indicate that the conclusion of the
paper [1] looks plausible, at least for the magnetization. Indeed, according to (34) the mag-
netization of the spherical model obtains the values ±m∗ with probability 1

2 , where m∗ is the
spontaneous magnetization. The magnetization of the Curie–Weiss model and, most likely,
of disordered finite-dimensional Ising models has the same distribution, see [3]. One can
also guess that the magnetization of various disordered O(n) models is uniformly distrib-
uted over an n-dimensional sphere. On the other hand, we also saw that the distribution of
the magnetization is highly-sensitive to symmetry-breaking perturbations. Indeed an arbi-
trarily weak symmetry-breaking boundary field restores self-averaging, that is, changes a
non-degenerate distribution to a degenerate one. Although that fact rather goes along with
than contrary to the lines of renormalization group argument.

The susceptibility of the spherical model

χn = βnd

[〈(
1

nd

∑

j∈Vn

xj

)2〉
−

(〈
1

nd

∑

j∈Vn

xj

〉)2]
≡ βnd t-Var(mn),

can be easily found from (29) and (34). If b �= 0, then (when properly normalized) the
susceptibility is self-averaging

χn ∼ n2

4Jζ0

(
1 − tanh

√
ζ0√

ζ0

)
,

while if b = 0 then the susceptibility is not a self-averaging observable

χn ∼ nd/2

|ϕ(1,1,...,1)|
8

π2

√(
1 − βc

β

)
W

(1)
d (d)

2βcJ
. (35)

The susceptibility of various 3D disordered models was studied intensively using Monte-
Carlo simulations since mid-90s, see, e.g. [15, 17]. The histograms obtained in [15, 17]
suggest that the distribution of the susceptibility is not normal, positively skewed, and has
heavy tails. The distribution of the susceptibility given by (35) has the same properties, and
thus, to some extend, explains the results of Monte-Carlo simulations. It has been suggested
in the paper [1] that the distribution of susceptibility should be the same within universality
classes. Since (35) is the asymptotics of (27) at the pole z = λmax it is not unreasonable to
expect the universality of the distribution of χn for a certain class of models. Although it is
tempting to speculate that O(n) models might belong to the universality class, nevertheless,
the results of the present paper do not indicate neither how wide the universality class is, nor
which models possibly belong to this class.

In conclusion, various disordered models have been intensively studied recently either
numerically or using various heuristic approaches like, for instance, the renormalization
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group. The present paper derives explicitly distributions of various thermodynamic quan-
tities within a non-trivial disordered finite-dimensional model—the spherical model in a
random field. The author hopes that the paper is helpful for understanding the conclusions
of heuristic theories, and for interpreting the results of Monte-Carlo simulations.
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